1. Determine algebricamente (em binário) o resultado da operação $A \times B + C$, considerando que todas as operações devem ser realizadas com operandos de 4 bits com sinal. Admita que A=1100 (formato Q2.2), B=0101 (formato Q1.3) e C=0110 (formato Q2.2). Indique qual o formato em virgula-fixa que permite representar o resultado de cada operação com a maior precisão possível.

2. Considere o ISA LEGv8 estudado nas aulas teóricas. Para cada uma das seguintes alíneas, indique o número e valor de todos os registos escritos pela execução do troço de código indicado. Utilize o símbolo "?" se não tiver informação suficiente para determinar o seu valor. Considere cada alínea como uma resposta independente. ..[2.0 val.]

X0		X10	0x0000	0100	X20		0	R30	0x0001	021C
X1	0x8000 0000	X11	0x0000	0120	X21		0	R31	0x0000	0000
х2	0x0000 0134	X12	0x0000	0140	X22		0	1		
хз	21	X13	0x0000	0160	X23		0	PC	0x0000	0140
X4	37	X14	0x0000	0220	X24		0]		
X 5	-3	X15	0x0001	0010	X25		0	STVEC	0x000A	0000
Х6	-1	X16	0x0002	0FEC	X26		0	SIPC		
x 7	137	X17	0x0003	84EF	X27	0x0000	100Ch	SIE	0x0000	FFFF
X8	15	X18	0x0000	FEFF	X28	0x0000	120Ch	SIP	0x0004	0000
х9	-15	X19	0x0000	AABB	X29	0x0000	140Ch	SSTATUS	0x0000	0002

æ)	XOR ×26, x 6, x27	b) add x0, x1,x2	c) all fun
	x16=FFFF EFF; PC= 0000 0150		×1; 0000 0146 PC
d) ,	1 x10,0x000 = 0000	,	02/0 0 000
	10:000 F and h	SFPC 10000 154 M	PC - fum
	5RRS x0,0x10y,x10	PC=STVEC= 000 A 0000 h	
_	0:0000 0000h [F: 000FFFFFh	551 ATUS = 0000 0022 h	

3. Escreva o código Assembly (usando o número mínimo de instruções) correspondente ao código C indicado em cada uma das alíneas. Para a resolução de cada alínea, admita que x10, x11, x12, x13 e x14 guardam as variáveis A, B, c, d e i, respetivamente, e ainda que as variáveis foram declaradas da seguinte forma:.....[4,0 val.]

long long A[20], c, d, i; double B[10]:

a)
$$C = d + A [i]$$

b) If $(C = 0)$ B[0] = B[1] + B[1]

c) for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

fld f_{1}, g_{10}, g_{10}

add x_{12}, x_{13}, x_{10}

for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

for $(i = d_{j}; > 0, i - 1)$

A[i] = 0

MV x14, x13

For:

old x_{10}, x_{10}, x_{10}

for x_{10}, x_{10}, x_{10}

4. Considere que pretende traduzir para Assembly do RISC-V o seguinte troço de código C:

double VetorA[20]; double VetorB[20];

double VetorC[20];

```
for (i=1; i<N; i++) C[i] = calcula(A[i-1],A[i],B[i]);
a) Corrija o código Assembly de forma a garantir a funcionalidade indicada, ignorando a convenção do
  compilador. Preencha na tabela da página seguinte apenas as linhas que devem ser corrigidas. Utilize o
  código apresentado nesta página como rascunho...
2: VetorA
3: VetorB
4: VetorC .byte 80
5:
                                  ; lê o endereço do vetor B
; lê o endereço do vetor C
                      x11,VetorB
               la
                     x12, VetorC
                                   , N=20 Antes da labal
8: forloop:
              addi x5.x0.20
               addi x6,zero,1 ; i=1
               bge x5,x6, forend ; while i<N
10:
          fld)fxw f0,0(x10) ; lê A[i-1]
11:
                    f1,8(x10)
12:
                                   ; lê A[i]
                     f2,8(x11)
               ; C[i]=calcula(A[i-1],A[i],B[i]);
                addi sp,sp,-2xzy ; coloca os elementos na pilha por ordem
                                    ; da chamada à função
15:
               fsd f0,16(sp)
               fsd f1,8(sp)
               fsd
                    f2,0(sp)
               jal
fld
18:
                    calcula
                    f0,0(sp)
                                    ; retira o resultado da função da pilha
                addi sp,sp,≱8
               fsd f0,8(x1)
                                   ; guarda o resultado em c[i]
               ; atualiza os ponteiros
22:
               addi x10,x10,8
                addi x11,x11,8
24:
                addi x12,x12,8
                ; iteração do for
```

b) Admitindo o seguinte código C relativo à função calcula:

addi x6,x6,1 blt x6,x5,forloop

25:

26: 27: forend:

```
double calcula(double A, double B, double C) {
    return (A-B)/C;
```

Complete o seguinte troço de código assembly de forma a garantir a correta tradução da função. Ignore as

```
calcula ; salvaguarda de contexto
          addi SP, SP, - 24
          Food A2, 16 (SP)
         food f1,8 (SP)
              fo, 40 (SP)
                f1, 32 (SP)
                                          ; B
              <sub>f2</sub>, 24 (6P)
         ; calculo do resultado
         fsub.d f0,f0,f1
                                          ; A-B
         fdiv.d f0,f0,f2
                                          ; (A-B)/C
         ; retorno do resultado da função
         fsd f0, 40(5P)
         ; reposição de contexto
         fld fo,06P)
          Ad K1. R (SP)
         jalr x0, x1,0
```

5. Responda às seguintes questões tendo em atenção que cada resposta errada corresponde a uma penaliz de ¼ da cotação	
a) A Arquitetura do Conjunto de Instruções (em inglês ISA – Instruction Set Architecture), define: \(\int \) O funcionamento lógico do processador (instruções, exceções, periféricos). \(\int \) A forma como o processador implementa as instruções. \(\int \) A arquitetura (sistema digital) de suporte à execução das instruções. \(\int \) Nenhuma das anteriores. \(\text{b} \) Indique qual dos seguintes endereços está alinhado a uma palavra de 32-bits: \(\text{AABCh} \) \(\text{AABCh} \) \(\text{AAB7h} \) \(\text{DE72h} \) \(\text{DE72h} \) \(\text{DE7Ah} \) \(\text{c} \) \(\text{Na arquitetura RISC-V, os bancos de registos estão fisicamente localizados:} \) \(\text{Na memória de instruções} \) \(\text{Na memória de dados} \)	
AABCh AAB7h DE72h DE7Ah C) Na arquitetura RISC-V, os bancos de registos estão fisicamente localizados: Na memória de instruções Na memória de dados	val.]
☐ Na memória de instruções ☐ Na memória de dados	
No processador, no estágio de Operand Fetch (OF) No processador, no estágio de Instruction Fetch (IF)	
d) Qual é a função do PC (Program Counter): Guarda a próxima instrução a executar Guarda o endereço da próxima instrução a executar Guarda o número de instruções executadas Guarda o número de instruções do programa	
e) A palavra de endereço de acordo com o ISA do RISC-V tem a d imensão de: 8 bits 16 bits 32 bits 64 bits	
f) A instrução jal é fundamental na implementação de: Ciclos (for, while) Chamadas a rotinas Retorno de rotinas Tratamento de excepções/interrupções	
g) Qual dos seguintes casos corresponde a um mapa de memória típico (os endereços crescem de baixo cima): Stack Stack Programa Dados Programa Dados Dados Dados Programa Dados Dados Dados Dados Dados	para

h) No contexto da instrução "1w x10, 0 (x11)", admitindo X11=100h, indique qual dos seguintes casos

corresponde a paiavra	ier da memoria:		
×			
107h	107h	107h	107h
106h	106h	106h	106h
105h	105h	105h	105h
104h	104h	104h	104h
103h	103h	103h	103h
102h	102h	102h	102h
101h	101h	101h	101h
100h	100h	100h	100h
OFFh	0FFh	OFFh	OFFh
OFEh	OFEh	OFEh	OFEh
OFDh	0FDh	OFDh	0FDh
OFCh	0FCh	OFCh	0FCh
OFBh	OFBh	OFBh	OFBh
0FAh	0FAh	0FAh	0FAh
0F9h	0F9h	0F9h	0F9h

	104h	104h	104h	104h
	103h	103h	103h	103h
	102h	102h	102h	102h
	101h	101h	101h	101h
	100h	100h	100h	100h
	OFFh	OFFh	OFFh	OFFh
	OFEh	OFEh	OFEh	OFEh
	OFDh	0FDh	0FDh	0FDh
	OFCh	0FCh	0FCh	OFCh
	OFBh	OFBh	OFBh	OFBh
	0FAh	0FAh	0FAh	0FAh
	0F9h	0F9h	0F9h	0F9h
i)	O SP deve ser inicializado Sempre pelo program Sempre pelo sistema Pelo sistema operativ Pelo sinal de <i>reset</i> do	nador operativo o (se existente) ou pelo p	orogramador (caso contrái	rio)
j)		inicação com os periféric	so aos periféricos: os for do tipo Port-Mappe os for do tipo Memory-Ma	
k)	Para o tratamento de um	interrupção/exceção o p	rocessador deve:	

	Esperar que a aplicação termine, antes de executar o código da rotina correspondente
X	Esperar que a instrução termine, antes de executar o código da rotina correspondente
	Abortar a execução da aplicação para executar o código da rotina correspondente
	Nenhuma das anteriores

I) A chamada à rotina de tratamento de uma interrupção/exceção envolve Guardar o valor do PC

Guardar o valor do PC e das SIP Guardar o valor do PC e do SP

Nova Secção 1 Page 1