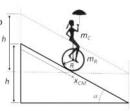
mestrado integrado em Engenharia biomedica Licenciatura em Engenharia Geológica e de Minas Licenciatura em Matemática Aplicada e Computação

Duração do teste: 1:30h Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova.



Problema 1

Jma ciclista desce uma rampa de inclinação α num monociclo (ver figura). A roda do monociclo tem uma nassa m_R um raio R e um momento de inércia I. O conjunto da ciclista e das peças fixas do monociclo tudo menos a roda) tem uma massa m_c .

- i) (Exame; 2,0 valores) Desprezando o efeito do atrito, determine as expressões da energia cinética e da energia potencial em função da coordenada x_{CM} indicada na figura (que representa a posição do centro de massa ao longo da rampa) e dos parâmetros dados. (Sugestão: repare que quando a roda roda de um ângulo θ , o centro de massa do sistema desloca-se de uma distância $x_{CM}=R\theta$ ao longo da rampa).
- Exame; 1,5 valores) Escreva a função de Lagrange que descreve o movimento do centro de massa do sistema em função da coordenada x_{CM} e dos parâmetros referidos na alínea anterior. Determine a equação diferencial do movimento do sistema em função desses parâmetros.
- :) (Exame; 1,5 valores) A roda do monociclo tem uma massa $m_R=10~{\rm kg}$, um raio $R=0.4~{\rm m}$ e um momento de inércia $I=1.4~{\rm kg}$ m 2 . O conjunto da ciclista e das peças fixas do monociclo (tudo menos a roda) tem uma massa $m_c=50~{\rm kg}$. Qual a velocidade da ciclista (centro de massa) ao atingir a base da rampa, se partir do repouso do topo da rampa situado a uma altura $h=4~{\rm m}$?

a)
$$x_{c} = R0$$
 $T = \frac{1}{2} \text{ on } v^{2} + \frac{1}{2} \text{ I ou}^{2} = \frac{1}{2} \text{ on } (\dot{x}_{cM})^{2} + \frac{1}{2} \text{ I ou}^{2} = \frac{1}{2} \left(\frac{1}{R^{2}} + m_{c} + m_{R} \right) \dot{x}_{cM}^{2}$

$$U = \left(m_{c} + m_{R} \right) g \left(h - x_{cM} \sin(x) \right)$$

$$H = \left(m_{c} + m_{R} \right) g \sin(x) = x$$

$$\frac{1}{R^{2}} + m_{c} + m_{R}$$

$$\frac{1}{R^{2}} + m_{c} + m_{R}$$

$$\frac{1}{R^{2}} + m_{c} + m_{R}$$

$$\begin{aligned} & \text{E}_{1}^{2} = \tilde{E}_{1}^{2} + U_{1}^{2} = U_{1}^{2} = (10+50) \, 9.8(4-0) = 60 \times 4 \times 9.5 = 2357 \\ & \text{E}_{1}^{2} = T_{1}^{2} + U_{1}^{2} = U_{1}^{2} = (10+50) \, 9.8(4-0) = 60 \times 4 \times 9.5 = 2357 \\ & \text{E}_{2}^{2} = T_{1}^{2} + U_{1}^{2} = T_{2}^{2} = \frac{1}{2} \left(\frac{1}{2} + m_{1}^{2} + m_{2}^{2} + m_{3}^{2} \right) \, V^{2} = \frac{1}{2} \left(\frac{1}{2} + m_{3}^{2} + m_{3}^{2} + m_{4}^{2} + m_{3}^{2} + m_{4}^{2} \right) \, V^{2} = \frac{2352}{2} \left(\frac{1}{2} + m_{3}^{2} + m_{4}^{2} + m_$$

rohlema 2

 a) (Exame; 1,5 valores) Mostre que a energia mecânica total E (cinética + potencial gravítica) de um satélite de massa m numa órbita circular em torno da Terra é dada por:

$$E = -G \frac{M_T m}{2r}$$

em que $G=6.67\times 10^{-11}$ N m 2 kg $^{-2}$ é a constante de gravitação universal, $M_T=5.98\times 10^{24}$ kg é a massa da Terra e r é a distância do satélite ao centro do Terra.

b) (Exame; 1,5 valores) Um satélite de massa $m=100~{
m kg}$ é colocado por um foguetão a uma altitude $h=r_1-R_T=300~{
m km}$. Seguidamente um foguete auxiliar, colocado no próprio satélite, desloca-o até uma órbita situada a uma distância do centro da Terra: $r_2=4,2\times 10^7~{
m m}$. Determine a energia consumida pelo foguete auxiliar neste transporte. (Raio média da Terra $R_T=6,371\times 10^6 {
m m}$)

a)
$$F=T+U$$
 $a_{V}=-\frac{V^{2}}{R}$ $V^{2}=\frac{6M}{R}$

$$U=-6\frac{Mm}{R}$$

$$\frac{1}{2}\frac{a_{V}B}{R} - \frac{6Mm}{R} = -6\frac{Mm}{2R}$$

Problema 5

- a) (Exame; 1,5 valores) Um mesão π é uma partícula sub-atómica que tem uma vida média de 26 ns no seu referencial próprio. A que velocidade deverá deslocar-se para que possa percorrer um distância de 10 m no referencial do laboratório?
- b) (Exame; 1,5 valores) Um raio γ (fotão de alta energia) pode produzir um eletrão e um positrão quando passa na vizinhança do núcleo de um elemento de elevada massa atómica. Qual a energia mínima de um raio γ necessária para produzir o par eletrão-positrão? (sugestão: lembre-se que as massas do eletrão e do positrão são idênticas: $m_e=9.1\times 10^{-31}~{\rm kg}$).

Problema

Um sensor utilizado num sistema de controlo de tráfego ferroviário tem um princípio de funcionamento

- a) (Exame; 1,5 valores) Se uma locomotiva que se aproxima do sensor imóvel, com uma velocidade de módulo v_c, emitir um som com um comprimento de onda λ (determinado por um observador em repouso em relação à locomotiva), qual o comprimento de onda, λ', do som detetado pelo sensor fixo ao solo? (determine a expressão de λ' em função de λ, v_c, e da velocidade do som no ar, v_{som}).
- b) (Exame; 1,5 valores) O sistema de controlo de tráfego é utilizado para prever a chegada dos comboios às estações através de um sinal transmitido do sensor para a estação seguinte. As locomotivas de cada composição emitem um som de referência ("apito") com uma frequência $f=1\,\mathrm{kHz}$ (no referencial do comboio). Sabendo que o sensor fixo ao solo detetou um sinal sonoro com uma frequência $f'=1100\,\mathrm{Hz}$ quando uma determinada composição se aproximava deste a velocidade constante, estime quanto tempo levará esse comboio a chegar a uma estação situada a $10\,\mathrm{km}$ do sensor

(considere a velocidade do som $v_s = 340 \text{ ms}^{-1}$).

c) (Exame; 1,5 valores) Suponha que o "apito" do comboio é originado por uma coluna de ar que vibra devido a uma onda estacionária no modo fundamental ("nodos" de pressão nos extremos do tubo). i) Determine o comprimento da coluna de ar utilizando os dados da alinea anterior; ii) Qual a frequência do som emitido se o ar no interior do apito for substituído por hélio (velocidade do som no Hélio:

a)
$$\lambda' = \lambda - \sqrt{c}T$$
 $\lambda = \sqrt{s}T = \frac{\lambda}{\sqrt{s}}$

$$\lambda' = \lambda - \frac{\sqrt{c}}{\sqrt{s}}\lambda$$

†) $\frac{\sqrt{s}}{t'} = \frac{\sqrt{s}}{t} - \frac{\sqrt{c}}{\sqrt{s}}\frac{\sqrt{s}}{t} \iff \frac{340}{1000} - \frac{340}{1000} \cdot (-1000) = \sqrt{c} = 30,9 \text{ m } \text{ m}$
 $|0|\cos - |0|\cos 0$ $|0|\cos - |0|\cos 0$

a)
$$k = Vt$$

$$t = t'$$

$$\int_{1-\frac{1}{c^2}} 1 = V \int_{1-\frac{1}{c^2}} 1 = V$$

Nova Secção 2 Page 1