
1. Describe the main Hw and Sw solutions to optimize the power
consumption.

• Hardware:
o Leakage Power

▪ Multi-VT: The leakage of a transistor increases with the
decrease in Vt, thus its possible to use high Vt cells when there
aren’t timing restrictions and then use low Vt cells when the
timing requirements are high.

▪ Power Gating: If there’s no voltage applied to block there will
be no current. So, it’s possible to complete turn of the supply
voltage to a block to reduce its static consumption.

▪ Long Channel Devices: With a higher L, the devices present a
lower leakage, however there are also downsides to this
approach since the increase in L means an increase in area
and thus capacitance, and reduction in the current. So, we
reduce the driving strength but reduce the leaked power.

o Dynamic Power:
▪ Frequency Control by Clock Gating: On a hardware level its

possible to just shut off the clock, thus not having losses.
▪ Voltage control by Variable Supply Voltage: Its possible to

reduce the dissipated power by reducing the voltage excursion
that the output has to do by simply reducing the supply
voltage.

o On a system/block level the layout of the ASIC/SoC can also be
optimized to reduce the power dissipation, such as by guaranteeing
the needed clearance for power tracks.

• Software (at OS level):
o Use Advanced Configuration and Power Interface (ACPI), so part of

the power management goes to the operating system. Thus, it can
have several power modes that can dynamically control the Operating
Point (OP) which is the pair of the supply voltage and the clock
frequency, which can be controlled independently. These power
modes are different power states, like sleep, power or performance.
Those state can be applied to global system (G-State), system-wide
(S-State), CPU (C-State), performance (P-State), devices (D-State)

o On a higher level one can implement power-aware algorithms and
efficient coding practices.

2. Compare microcontrollers and general-purpose microprocessors in
terms of application fields, cost, computing power, power consumption,
Software Development Toolkits

o Application Fields:
▪ GPP – Very generic architecture, so very versatile. Used in low

end ES when energy and performance are not crucial. Might be
used when a prototype done with a MCU is ready for
production. Will require a PCB or SoC to integrate all the
peripherals. Limited interaction with the environment.

▪ MCU – A more specific processing unit, which aims to tackle
simple problems, which don’t require top computing power,
but have constraints on the use of resources and development
time. Easier to develop a prototype and working example.
Useful because there’s no integration to be one, since its
already a SoC. Built to interact with the environment.

o Cost:
▪ GPP – Higher price
▪ MCU – Lower price.

o Computing Power:
▪ GPP – It has more computing power but it more power hungry.
▪ MCU – It has less computing power but is more specific and

low power.
o Power Consumption:

▪ GPP – Are typically more power hungry, however using RISC
can become a low power solution.

▪ MCU – Usually done to be low or ultra-low power with very
power management and adequate usage of power states.

o Software Development Toolkits:
▪ GPP – The programming is done in assembly. Either in RISC or

CISC.
▪ MCU – Programming is done in C, and only something in

assembly, and there are several SDK, ranging from simple C
compilers (like Arduino IDE) to complete integrated framework
for performance analysis and configuration management (like
STMCube).

3. Describe the design flow of an embedded systems based on COTS +
PCB.

• The first step of a PCB-based design is the choice of the COTS.
o Several types of components which can be passive, power supply,

converters, filters, electro-optical components, RF components,
displays, sensors and digital components.

o They also have different packaging which alters the mounting,
positioning of the pins and material of the package, and therefore
the design choices.

o Should consider effectiveness, pin-count, pitch and thermal
conductivity when choosing the package.

• Design the physical support.
o After choosing the components, one must design the PCB,

composed of 3 main elements, the conductors, the insulators and
the glue. In the end a board is a stack of layers of insulator, where
their faces host the wires, separated by layers of pre-peg

• Send the board to production and wait.

• Test the board.
o After the realization of the board, it is necessary to do electrical tests

to verify if the contact points are connected or isolated.
o Can be done by a bed-of-nails, flying-probe or X-Ray inspection

• Mounting
o With a board which is function one must solder and mount all the

components. For small boards and limited volumes, the mounting
is carried out manually. For volume and/or high complexity, specific
equipment is used.

• Iterate if needed.

4. Design Space Exploration: which are the main problems to be solved?
What is the meaning of optimal and robust optimization? What is the
concept of fidelity of the evaluation metrics?

• Main problems to be addressed:
o Hardware platforms are used by vendors as reference designs for

family of applications, allowing for design time customization
targeted to a specific application, pre-verified configurable IP that are
instantiated and sized to meet application-specific constraints and
allows for low-risk deployment while meeting time-to-market
constraints. Thus, DSE is the tunning process aimed at solving these
problems.

• Meaning of optimal and robust optimization:
o While optimizing its desirable to find the global minimum, thus

making the optimization optimal. If a local minimum is found instead,
the system could still be further optimized. However, due to the fact
that in reality most of the optimization problems don’t have fixed
paraments, but stochastic ones, the optimization should be robust to
the point where that, even with the inherent randomization and
stochasticity the system is still optimized. Note that finding the best
robust solution doesn’t mean that the best global solution has been
found. To address such a problem usually a Multi Objective
Optimization Algorithm is needed.

• The concept of fidelity of evaluation metrics:
o The fidelity of an estimation is the percentage of correctly predicted

comparisons between design implementations.

5. Describe the main mechanisms for the interfacing
• I/O Addressing – A MCU communicates using some of its pins.

o Port-Based (parallel): Processor has one or more N-Bit ports, and its
software reads and writes a port just like a register

o BUS-Based (serial): Processor has address, data and control ports
that form a single bus, the communication protocol (like I2C or
CANBUS, is built into the processor, a single instruction carries out
the read or write protocol on the bus. Can be either standard I/O or
memory mapped I/O

▪ Memory-mapped I/O: Peripheral register occupy addresses in
same address space as memory

▪ Standard I/O: Additional PIN M/IO indicates whether a
memory or peripheral access.

• Interrupts: The processer polls an interrupt pin. If any peripheral has data to
send, the Int will be read, and an Interrupt Service Routine will run, after
suspending the current program. Useful to avoid polling all the peripherals.7

o Fixed Interrupt: The address of the ISR is fixed and built into the
microprocessor.

o Vectored Interrupt: The peripheral must provide the address.
o Interrupt address table: A compromise between fixed and vectored

interrupts, using an interrupt pin and one interrupt acknowledge pin
and a table in memory holding all the ISR address. The peripheral
provides the index of the table instead of the ISR address.

• Direct Memory Access (DMA): Data is sent directly to the memory using a
DMA controller which is independent of the CPU.

6. Main characteristics of the protocols used to interface peripherals in
microcontroller-based systems

7. Comparative analysis of the main characteristics, role and application
fields of the protocols I2C and SPI

8. Explain the possible use of WCET (Worst Case Execution Time) analysis
and the difference w.r.t. pWCET (probabilistic WCET)

9. Describe the main differences between scheduling and real-time
scheduling of tasks, with a description and comparison between EDF
and RMS scheduling

10. Describe the main source of unpredictability in the execution of code
and their possible solution (or at least mitigation)

11. Describe the different phases and accuracy during the different steps in
the verification of an embedded system

• Requirement Verification: Low-level conceptual accuracy.
• Modelling and Simulation: High accuracy if models are representative of the

real system.
• Code-Level Verification: High accuracy for logical and functional errors.
• Hardware-in-the-Loop Testing: Very high accuracy in terms of hardware and

software integration.
• System-Level Verification: High accuracy for overall functionality and real-

world performance.
• Field Testing: Very high accuracy for real-world behaviour but may expose

unforeseen issues.
• Regression and Maintenance Testing: High accuracy for ensuring that

changes don't break functionality.

12. Which are the main differences between an ideal and a real sensor?
Describe the main characteristics of a MEM sensor and its potential
benefits over conventional technologies.

• On an ideal sensor typical we model it as device which generates an electric
signal proportional to a physical measurement, being that acceleration,
distance, pressure whatever. A real sensor will never be only proportional, it
might have offsets, it might be non-linear, and the proportionality only
applies for a certain interval of its working range, thus a good conditioning
chain is needed to make sure that those non-idealities are accounted for.

• Regarding MEMS, they are micro, usually done by either being bulk or surface
micromachining, so they are easily integrated with already existing
technologies and product chains. They are electro and mechanical, so they
are transductors or actuators that transform one of these signals into the
other. They present several potential benefits since their small size allow for
the mass production on such devices, lowering their cost. Besides it allows
for a better integration, since the smaller they are the more sensors its
possible to pack in a system allowing for more reliability and diverse
measurements from the same system.

13. Describe the main aspects to be taken into account to create a toolchain
to analyse power and thermal aspects of an embedded multiprocessor.

• Such a toolchain will need to have two main parts which work together, the
power analysis and the thermal analysis. It should take into account both
average and peak power as both are relevant for energy and thermal
optimization and should analyse how the temperature affects the power
consumption and vice-versa.

o Power: To analyse the power, a robust tool will survey all the power
saving opportunities, from the System level to the physical, passing
through the behavioural, RTL and Logic levels. Such a tool will give
more relevance to where more savings can be achieved, namely at the
system level guaranteeing that both HW and SW are optimized. Will
also have to look at how the power states are used.

o Thermal: Regarding the thermal part, the tool should consider the
power analysis done, relate it with the physical design of the system
and estimate the temperature

14. Describe the main steps in the verification of Hw-Sw embedded
systems.

• Requirement Verification: The designers should make sure that both the HW
and SW requirements are well defined and guarantee that their interaction is
has expected

• Modelling and Simulation: Create high level models of both the HW and the
SW and verify if they are according to the defined requirements. Again,
guarantee that the combined hardware-software model also accurately
models their expected interaction.

• Hardware Verification:
o RTL Testing and simulation.
o Hardware emulation, like post synthesis simulation.
o Post fabrication testing, verifying if the developed hardware was

produced correctly. Can be done using scan chains.
• Code-Level (SW) Verification:

o Test individual units of code.
o Test the integration of those units.
o Eventually test if new software doesn’t break old one.
o Test if the SW meets the RT constraints.
o Test other requirements, such as memory and resource usage.

• Co-Verification and HW-SW Integration Testing: To verify if the complete
system works as intended, for instances at critical boundaries such as
peripheral I/O and DMA controllers and that both meet the timing
requirements.

• System level Validation: To test the complete system under real world
operational conditions.

• Performance testing and optimization: If needed further testing can be done
with the intent to optimize the system.

• Regression and Maintenance Testing: At any update of either HW or SW
testing should be done to guarantee that no functionality was damaged by
the update.

15. Role and management of timers and watchdog in embedded systems
based on microcontrollers

• A timer is a specialized type of clock to measure time intervals. Has two main
operating modes, either as a Counter or a Timer. A timer in counter mode will
store the number of times a particular event or process occurred in each time
interval with respect to a clock signal. Can be used to improve performance,
reduce power or simplify the design by replacing repetitive or looping CPU
operation with a simple timer or counter interrupt, can be used to generate
PWM to provide which can be used for instance in the control of motor.

• The watchdog is a periodic timer that’s used to monitor the application
execution evolution. Configured once at booth to trigger an interrupt or reset
at a fixed time interval, thus it must be cleared before it expires to prevent
triggering. It’s installed in a system to detect any software anomalies

• Both are peripherals with stringent restrictions on the clock that they are
provided with since as noted both handle some sort of time keeping. Both
present several working modes Timer – (Timer or Counter) and Watchdog –
(windowed or non-windowed) and these modes can be configured by setting
their registers appropriately

16. Describe the mechanisms and requirements to implement over the air
firmware update (FOTA), focusing also on the benefits, costs and
associated risks.

• FOTA allows to partially or fully update the firmware on a device wirelessly.
Thus, it allows to address bugs and security vulnerabilities, allows for a
shorter time to maker since the products can be shipped faster and its
possible to delay low priority features and roll them out later.

• To implement FOTA the device needs wireless connection and there needs
to be a firmware server. When a new update is rolled out, the firmware
images are encrypted and sent to the firmware update server, from there the
end-device queries the firmware update server and fetches new firmware
image, afterwards on the device itself the package will be decrypted,
validated an applied.

• This process has 3 major challenges
o Memory: The update needs to be stored after the downloading and

there should be always a fallback, in case there’s a need to rollback
some update.

o Communication: Theres need for the wireless connection and the
software will be sent in discrete packets, thus the packetizing, the
packet structure and the protocol must all be accounted for in the SW
design

o Security: The software should be well encrypted and secured. So,
there should be authentication, confidentiality and integrity should
be guaranteed while sending the file.

• Regarding the cost, it is cheaper, since a total product recall is way more
costly than implementing the FOTA. However, this is not an excuse to
produce not accurately verified systems.

17. Describe the main sources of power consumption of a hardware
platform and the main solution to mitigate such problem.

• The primary source of dynamic power consumption is the switching power,
so the power required to charge and discharge the output capacitance on a
gate. The main solution to reduce these losses is to reduce the supply
voltage, since the relation between the dissipated power and the voltage is
quadratic. Its possible to do so to different logic blocks, according to
performance requirements.

• Pdyn = Nb * C * f * V^2
o Pdyn = Dynamic Power
o Nb = Number of switching bits
o C = Capacitance
o f = Switching frequency
o V = Supply voltage

18. What can be done, at the software and operating system levels, to face
with the problem of power consumption

• At the OS level one can set operating points (ie. The pair of optimal supply
voltage and clock frequency for a system/block given usage). Doing so can
be done by using ACPI (Advanced Configuration Power Interface) a low-level
software that moves the power management under the control of the
operating system and allows to set the power sates for:

o Global system states
o System-wide sleep states
o CPU level power/sleep/performance states
o Device level power/sleep states

• Some of these states can be implemented by using DVFS: Dynamic
Voltage/Frequency Scaling

• Additionally, it’s also possible to implemented power aware algorithms
which allow for lower power consumption.

19. Which are the goals of the ACPI standardization and the main status that
can characterize the different part of a computing platform.

• The goal of the ACPI (Advanced Configuration and Power Interface)
standardization was to present an open-source platform-independent
standard that allows for power management, auto configuration (plug and
play functionality) and status monitoring.

• The main status that can characterize the different parts of a computing
platform are

o Global system States
o System-wide sleep States
o CPU level power/sleep/performance States
o Device level power/sleep States

