Exercise 1

Consider an electron subject to a static magnetic field $B_0=1\,T$ along \vec{z} and a resonant magnetic field of amplitude $B_1=1~mT$ along \vec{x} coupled to the electron. After calculating the frequency of the resonant field, derive:

MB = 9.274 × 10-24 3/T t = 1.055 x 10-34 3.8

- a) the pulse envelope amplitude to operate an \hat{X} gate, when the pulse duration is $t_1 = 100 \ ns$.
- b) the pulse duration to operate an \hat{X} gate, when the pulse envelope amplitude is $\eta = 0.5$.

$$m \Leftrightarrow \Sigma$$

 $\delta \Leftrightarrow rotation axis$

$$B_{0} = 1 \text{ Trend } \Rightarrow$$

$$B_{1} = 1 \text{ mTrend } \Rightarrow$$

$$\Omega_{0} = \frac{2 \mu_{B} B_{0}}{h} = 2 \text{ Trend } \Rightarrow 286 \text{ Hz}$$

$$\Omega_{0} = \frac{2 \mu_{B} B_{1}}{2 \text{ hred}} = 2 \text{ Trend } \Rightarrow 14 \text{ MHz}$$

$$O(t) = \int_{0}^{t} m(t) \mathcal{L}_{0} dt \quad t \Leftrightarrow 0$$
For square wave:
$$0 = m \mathcal{L}_{0} t$$

a)
$$t_1 = 100 \text{ ms}$$

 \hat{X} gate \Rightarrow Rotation of TI around α
 $\theta = \eta \Omega_0 t \Rightarrow \eta = \frac{\theta}{\Omega_0 t} = 0.357$

$$t_1 = 100 \text{ ms}$$
 \hat{X} gate \Rightarrow Rotation of π around α
 $\theta = m \Omega_0 t \Rightarrow m = \frac{\theta}{m \Omega_0} = 0.357$

b) $m = 0.5$
 $\theta = m \Omega_0 t \Rightarrow m = \frac{\theta}{m \Omega_0} = 0.357$

Exercise 2

Consider an electron subject to a static magnetic field $B_0 = 1 T$ along \vec{z} . A resonant magnetic field with tunable phase of amplitude $B_1=1~mT$ along \vec{x} is coupled to the electron by an on/off switch with no amplitude modulation. Calculate the frequency of the resonant field and draw the pulse schedule to operate the gate $\hat{O} = \hat{H} \cdot \hat{X}$.

$$B_0 = 1T \stackrel{?}{=} O_m/O_{ff} \Rightarrow m = 1 \text{ or } O$$

$$B_1 = 1 \text{ mT } \stackrel{?}{=} O_{ff} = \lambda \cdot \frac{1}{2} = \lambda \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$D_0 = 2\pi \cdot 14 \text{ MHz} \quad \stackrel{?}{=} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$\hat{x}: \delta = 0 \quad \theta = \Pi$$

$$\theta = \Omega_0 t \iff t = \frac{\theta}{\Omega_0} = 35.73 \text{ mS}$$

$$\hat{y}^{1/2}: \delta = \frac{\pi}{2} \quad \theta = \frac{\pi}{2} \implies t = 17.87 \text{ mS}$$

Exercise 3

An electron is immersed in a static magnetic field $B = 1 \, T$ directed along \vec{z} and coupled to a resonant magnetic field of amplitude $B_1=1~mT$ along $ec{x}$. Calculate the timing accuracy of a control system to provide a rotation angle accuracy $\Delta\theta = \frac{\pi}{1000}$ along \vec{x} .

$$B_0 = 1 \text{ Tree}^{\frac{1}{2}}$$

$$B_1 = 1 \text{ mTree}^{\frac{1}{2}}$$

$$\Delta \theta = \Omega_0 \Delta t \iff \Delta t = \frac{\Delta \theta}{\Omega_0} = 35.7 \text{ ps}$$

$$\Delta \theta = \frac{\pi}{1000}$$

$$\Omega_0 = \frac{\mu_B B_1}{h} = 2\pi \cdot 14 \text{ MHz}$$

Exercise 1

 $|\psi\rangle$. $P_0(|\psi\rangle) = 0.8, P_1(|\psi\rangle) = 0.3, P_0(H|\psi\rangle) = 0.6,$ Knowing that $P_1(H|\psi) = 0.4, P_0(HS^{\dagger}|\psi) = 0.7, P_1(HS^{\dagger}|\psi) = 0.3$, estimate the angles θ, ϕ localizing the state on the

$$\begin{split} P_{O}(1\Psi) - P_{1}(1\Psi) &= \cos(\theta) < = 2 \cos(\theta) = 0.5 < \Rightarrow \theta = \frac{\pi}{3} \\ P_{O}(H\Psi) - P_{1}(H\Psi) &= \sin(\theta)\cos(\phi) < = 2 \frac{\sqrt{3}}{2}\cos(\phi) = 0.2 < \Rightarrow \cos(\phi) = \frac{4}{10\sqrt{3}} \\ P_{O}(HS^{\dagger}/\Psi) - P_{1}(HS^{\dagger}/\Psi) &= \sin(\theta)\sin(\phi) < = 2 \frac{\sqrt{3}}{2}\sin(\phi) = 0.4 < \Rightarrow \sin(\phi) = \frac{8}{10\sqrt{3}} \\ \tan(\phi) &= \frac{\sin(\phi)}{\cos(\phi)} = 2 \quad \phi = 1.107 \text{ rad} \\ 63.4^{\circ} \end{split}$$

Derive the pulse schedule to operate $\hat{O} = \hat{X}\hat{H}$ for a spin-qubit quantum computing system equipped with the following primitives:

• $R_z(\theta)$ by free Larmor precession induced by a static field $B_z = 0.5 T$

B,=0.5t

 $R_x(\theta)$ by ESR induced by a resonant oscillating field $B_x = 2.7 \ mT$ with constant phase

$$\begin{array}{lll}
\mathring{O} = \mathring{X} \cdot \mathring{H} \\
\mathring{A} = \mathring{2}^{1/2} \cdot \mathring{x}^{1/2} \cdot \mathring{x}^{1/2} \\
\mathring{A} = 2 \overset{1}{1} \overset{1}{2} \overset{1}{2}$$

Consider the operator in Exercise 2. Derive the pulse schedule to operate \hat{O} in a spin-qubit quantum computing system equipped with:

$$\lambda = 2\pi - \frac{\xi_x}{2}\omega$$

B2 = 2.7 m T

- Calibrated $R_x\left(\frac{\pi}{2}\right)$ pulses realized by ESR with $\Omega=18.896~MHz$, $\omega=7~GHz$
- Virtual-Z gates with arbitrary phase angle heta

Exercise 4

Consider a quantum system with natural frequency $\omega_{01}=2\pi\cdot 5$ GHz and anharmonicity $\Delta\omega=2\pi\cdot 200$ MHz where a π -rotation pulse along \vec{x} is operated by ESR. Compare the driving amplitudes η and spectral amplitudes \mathcal{B} of the driving field for the $|1\rangle \rightarrow |2\rangle$ transition for a driving pulse with:

- a) rectangular envelope of amplitude η_1 and width $t_1 = 10 \ ns$.
- b) rectangular envelope of amplitude η_2 and width $t_2 = 100 \ ns$.
- c) Gaussian envelope of amplitude η_3 with FWHM $\Delta t = 10~ns$.

$$\Delta_{01} = 2\pi \cdot 56H^{2}$$

$$\Delta_{0} = 2\pi \cdot 200MH^{2}_{2}$$

$$\Delta_{01} = 2\pi \cdot 200MH^{2}_{2}$$

$$\Delta_{12} = \omega_{01} + \Delta\omega = 2\pi \cdot 5.26H^{2}$$

$$Signal 1:$$

$$m(t) = m_{1} \cdot rect(\frac{t}{t_{1}})$$

$$f(m(t)) = m_{1} \cdot t_{1} \cdot simc(\omega \frac{t_{1}}{2}) = S_{1}(\omega) = f(t) = m_{1} \cdot t_{1} \cdot simc(\frac{(\omega - \omega_{01})t_{1}}{2})$$

$$Signal 2:$$

$$m(t) = m_{2} \cdot rect(\frac{t}{t_{2}})$$

$$S_{2}(\omega) = m_{2} \cdot t_{2} \cdot simc(\frac{(\omega - \omega_{01})t_{1}}{2})$$

$$Signal 3:$$

$$FWHM \Delta t = 10 \text{ ms} \Rightarrow \sigma = \frac{\Delta t}{2 \cdot 355} = 4.25 \text{ ms}$$

$$m(t) = m_{3} \cdot e^{-\frac{t}{2}}$$

$$S_{3}(\omega) = m_{3} \cdot \sqrt{2\pi} \cdot \sigma \cdot B_{1} \cdot e^{-\frac{t}{2}}$$

$$S_{3}(\omega) = m_{3} \cdot \sqrt{2\pi} \cdot \sigma \cdot B_{1} \cdot e^{-\frac{t}{2}}$$

$$S_{3}(\omega) = simc(\frac{\Delta \omega t_{1}}{2}) = 0.034$$

$$\frac{S_{2}(\omega_{01})}{S_{3}(\omega_{01})} = simc(\frac{\Delta \omega t_{2}}{2}) = 0.0026$$

$$\frac{S_{3}(\omega_{01})}{S_{3}(\omega_{01})} = e^{-\frac{t}{2}} = 6.56 \cdot \log^{2} = 6.56 \cdot \log^{2$$